Shanghai Linye Electronic Co. Ltd

SPECIFICATION

L2263

Current Mode PWM Controller VERSION 1.0

Description

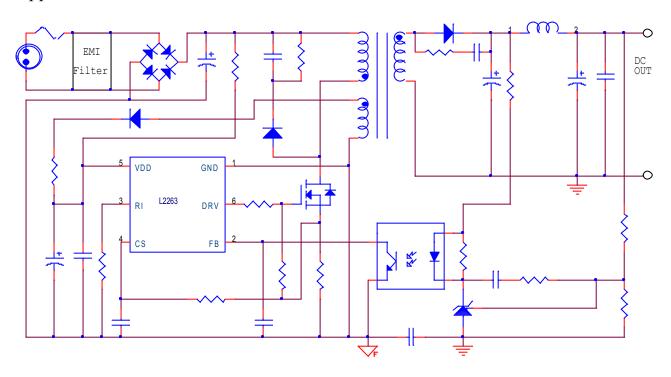
L2263 is highly integrated current mode PWM control IC optimized for high performance, low standby power and cost effective offline flyblack converter applications in sub 30W range.

PWM switching frequency at normal operation is externally programmable to tight range. At no load or light load condition, the IC operates in extended 'burst mode' to minimize switching loss.Lower standby power and higher conversion efficiency in thus achieved.

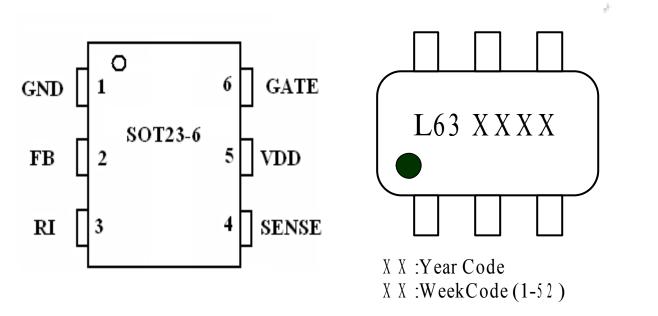
VDD low startup current and low operating current contribute to a reliable power on startup design with L2263.A large value resistor could thus be used in the startup circuit to minimize the standby power.

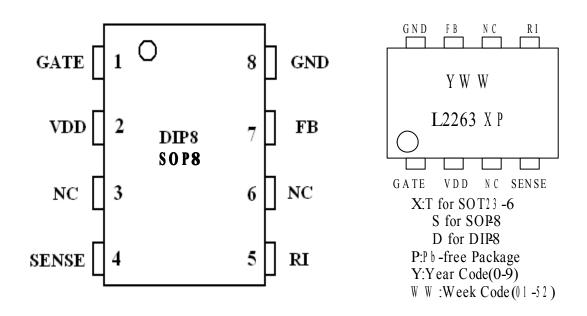
L2263 offers complete protection coverage with automatic self- recovery feature including Cycle-by-Cycle current limiting (OCP), over temperature protection(OTP), VDD over voltage clamp and under voltage lockout (UVLO). The Gate output is clamped to maximum 18V to protect the power MOSFET.

Features


- Proprietary frequency shuffling technology for improved EMI performance.
- External programmable PWM switching frequency.

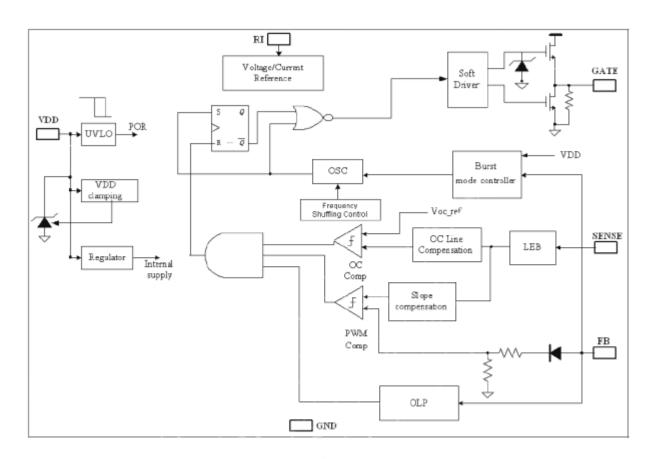
- Leading edge Blanking on current sense input.
- Internal synchronized slope compensation.
- Extended burst mode control for improved efficiency and minimum standby power design
- Low VDD startup current and low operating current.
- Gate output maximum voltage clamp
- Cycle-by-Cycle Current Limiting, Built-in Adaptive Current Peak Regulation
- Power on Soft-start, Programmable CV and CC Regulation
- VDD Under Voltage Lockout with Hysteresis (UVLO), VDD OVP, OLP, OTP,OCP,VDD Clamp
- Internal over temperature protection (OTP)


Applications


- Cell Phone Charger
- Digital Cameras Charger
- Power adptor
- Set top box power supplies
- Open_frame SMPS
- Battery charger

Application Circuit

Pin Assignment & Marking Information


Ordering Information

Part number	Package	version number
L2263TP	SOT23-6	
L2263SP	SOP-8	
L2263DP	DIP-8	

Pin Description

Symbol	Туре	Description
GATE	О	Totem-pole gate diver output for the power MOSFET
VDD	P	Chip DC power supply pin
SENSE	I	Current sense intput pin. Connected to MOSFET current resistor node.
RI	Ι	Internal oscillator frequency setting pin.
FB	I	Feedback input pin. The PWM duty cycle is determined by voltage level into this pin and SENSE pin input.
Gnd	P	Ground.

Block Diagram

Absolute Maximum Rating

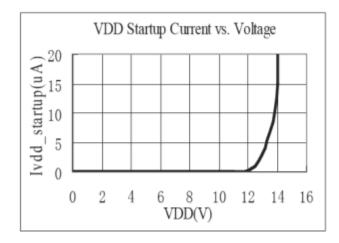
Parameter	Value	Unit
VDD supply voltage	30	V
VDD clamp voltage	32	V
VDD clamp current	10	mA
VFB input voltage	-0.3 to7	V
VSENSE input voltage to SENSE pin	-0.3 to7	V
VRI input voltage to RI Pin	-0.3 to7	V
Min/Max operating junction temperature	-55 to 150	$^{\circ}$
Operating ambient temperature	-20 to 85	\mathbb{C}

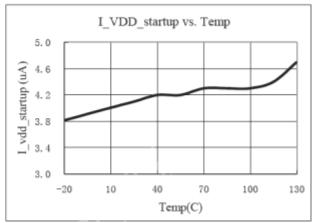
Recommended Operating Conditions

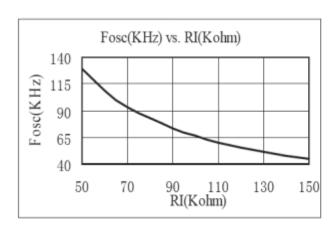
Symbol	Parameter	Min. Max.	Unit
VDD	Supply Voltage Vcc	10 to 30	V
RI	RI Resistor Value	100	Kohm
T _{OA}	Operating Ambient Tmperature	-20 to 85	\mathbb{C}

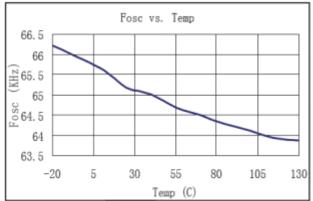
Electrical Characteristics($T_A = 25$ °C, if not otherwise noted)

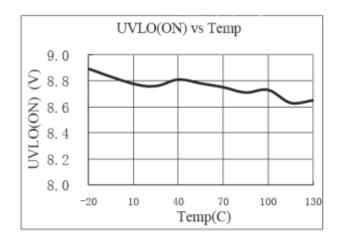
Symbol	Parameter	Conditions	Value			Unit
Symbol	1 arameter	Conditions	Min.	Тур.	Max	
Supply Voltag	Supply Voltage(V _{dd} Pin)					
Idd_startup	VDD start up current	VDD=12.5V,RI=100K		3	15	uA
Idd	VDD Operation	VDD=16V		2.3		mA
Tuu	current	RI=100K Ω , FB=3V		2.3		IIIA
UVLO(ON)	VDD under voltage		7.7	8.8	9.8	V
O VLO(OIV)	lockout enter	1.7		0.0	7.0	*
UVLO(OFF)	VDD under voltage		13	14	15	V
O VLO(OII)	lockout exit			14	13	*
VDD clamp	VDD zener clamp	Idd=10mA		32		V
VDD_clamp	voltage	Tud Tollin		32		ľ
Volta ge Feedb	ack (FB Pin)					
AVCS	PWM input gain	Δ VFB/ Δ VSENSE		2		V/V
VFB_open	VFB open loop voltage			5.7		V
IFB short	FB pin short current	Short FB pin to GND and	0.9			mA
II D_SHOIT	T D più short current	measure current				
VFB_burst	Burst mode voltage			1.2		V
VTH PL	Power limiting FB	Iout= - 10mA		3.7		V
V 111_1 L	threshold voltage	Tonn't		3.7		'
TD PL	Power limiting			32		mS
	debounce time					

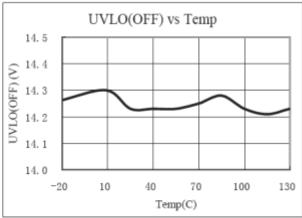

Shanghai Linye Electronic Co. Ltd


L2263 Current Mode PWM Controller


DC MAY		VDD=18V,SENSE=0V		7.5		0./
DC_MAX	Maximum duty cycle	RI=100KΩ,FB=3V		75		%
Current Sensir	ng (SEN Pin)	<u> </u>	l	<u> </u>	1	1
T 11 1:	Leading edge blanking	DV 100V 0		250		
T_blanking	time	RI=100K Ω		250		nS
ZSENSE_IN	Input impedance			40		ΚΩ
VTII ganga	Over current threshold			0.9		V
VTH_sense	voltage			0.9		V
Oscillator			•	•	•	•
Fosc	Normal oscillation	RI=100K Ω	60	65	70	Khz
TOSC	frequency	100K 32	00	03	10	
A C +	Frequency temperature	VD TA −20°C to 100°C		1,		%
Δf_temp	stability	D=16V,RI=100K Ω		5		
ACAMD	Frequency voltage	VDD=12V to 25V				%
Δf_{VDD}	stability	RI=100K Ω		5		
RI_range	Operating RI range		50	100	150	ΚΩ
VRI_open	RI open load voltage			2		V
Eaga DM	Burst mode base			25		Khz
Fosc_BM	frequency			23		KIIZ
Δf_OSC	Frequency modulation	RI=100K Ω	-5		+5	%
Δ1_03C	range /Base frequency	KI-100K 52	-5			
Gate Drive Ou	atput		·	•		•
VOL	Output low level	VDD=16V,IO=-20mA			0.8	V
VOH	Output high level	VDD=16V,IO=20mA	10			V
V Clamp	output clamp voltage			18		V
v_Ciallip	level			10		*
T_r	Output rising time	VDD=16V,CL=1nF		220		nS
T_f	Output falling time	VDD=16V,CL=1nF		70		nS


Characterization Plots


VDD = 16V, RI = 100 Kohm, TA = 25oC condition applies if not otherwise noted.



Application Information

The L2263 is a highly integrated PWM controller IC optimized for offline flyback converter applications in sub 30W power range. The extended burst mode control greatly reduces the standby power consumption and helps the design easily meet the international power conservation requirements.

Startup Current and Start up Control

Startup current of L2263 is designed to be very low so that VDD could be charged up above UVLO threshold level and device starts up quickly. A large value startup resistor can therefore be used to minimize the power loss yet provides reliable startup in application. For AC/DC adaptor with universal input range design, a 2 M Ω , 1/8 W startup resistor could be used together with a VDD capacitor to provide a fast startup and low power dissipation solution.

Operating Current

The Operating current of L2263 is low at 2.3mA.Good efficiency is achieved with L2263 low operating current together with extended burst mode control features.

Frequency shuffling for EMI improvement

The frequency Shuffling/jittering (switching frequency modulation) is implemented in L2263. The oscillation frequency is modulated with a random source so that the tone energy is spread out. The spread spectrum minimizes the conduction band EMI and therefore reduces system design challenge.

ended Burst Mode Operation

At zero load or light load condition, majority of the power dissipation in a switching mode power supply is from switching loss on the MOSFET transistor, the core loss of the transformer and the loss on the snubber circuit. The magnitude of power loss is in proportion to the number of switching events within a fixed period of time. Reducing switching events leads to the reduction on the power loss and thus conserves the energy.L2263 self adjusts the switching mode according to the loading condition. At from no load to light/medium load condition, the FB input drops below burst mode threshold level. Device enters Burst Mode control. The Gate drive output switches only when VDD voltage drops below a preset level and FB input is active to output an on state. Otherwise the gate drive remains at off state to minimize the switching loss and reduces the standby power consumption to the greatest extend. The frequency control also eliminates the audio noise at any loading conditions

Oscillator Operation

A resistor connected between RI and GND sets the constant current source to charge/discharge the internal cap and thus the PWM oscillator frequency is determined. The relationship between RI and switching frequency follows the below equation within the specified RI in Kohm range at nominal loading operational condition.

Fosc = $6500/RI(K \Omega)$ (Khz)

Current Sensing and Leading Edge Blanking

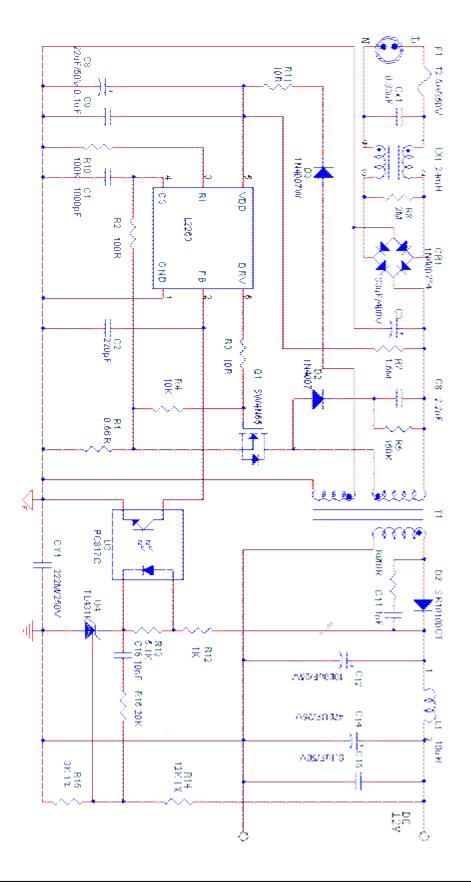
Cycle-by-Cycle current limiting is offered in L2263 current mode PWM control. The switch current is detected by a sense resistor into the sense pin. An internal leading edge blanking circuit chops off the sense voltage spike at initial MOSFET on state due to Snubber diode reverse recovery so that the external RC filtering on sense input is no longer required. The current limit comparator is disabled and

thus cannot turn off the external MOSFET during the blanking period. PWM duty cycle is determined by the current sense input voltage and the FB input voltage.

Internal Synchronized Slope Compensation

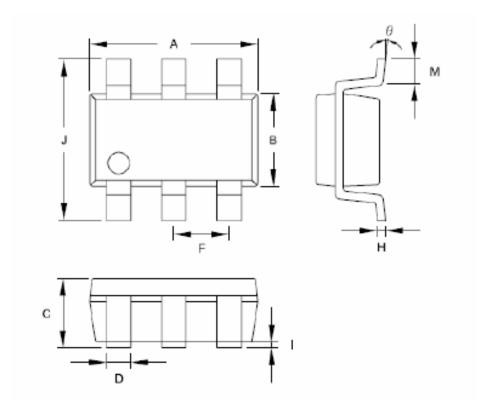
Built-in slope compensation circuit adds voltage ramp onto the current sense input voltage for PWM generation. This greatly improves the close loop stability at CCM and prevents the sub-harmonic oscillation and thus reduces the output ripple voltage.

Gate Drive

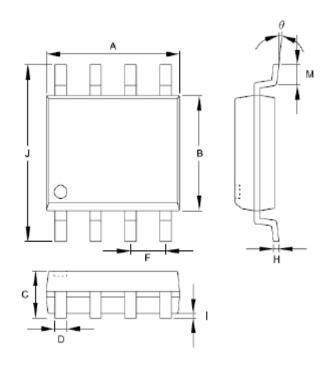

L2263 Gate is connected to an external MOSFET gate for power switch control. Too weak the gate drive strength results in higher conduction and switch loss of MOSFET while too strong gate drive output compromises the EMI.A good tradeoff is achieved through the built-in totem pole gate design with right output strength and dead time control. The low idle loss and good EMI system design is easier to achieve with this dedicated control scheme. An internal 18V clamp is added for MOSFET

gate protection at higher than expected VDD input.

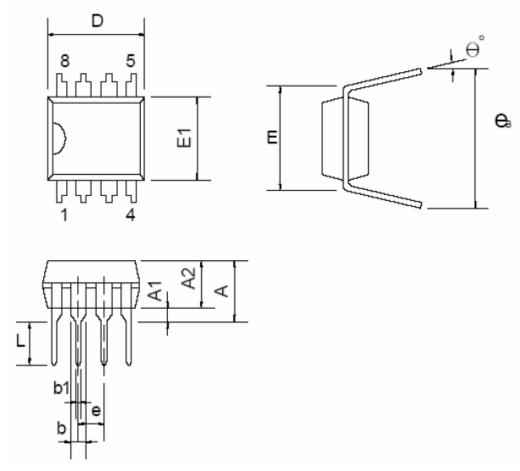
Protection Controls


Good power supply system reliability is achieved with its rich protection features including Cycle-by- Cycle current limiting (OCP), Over Load Protection (OLP) and over voltage clamp, Under Voltage Lockout on VDD (UVLO). With On-Bright Proprietary technology, the OCP threshold tracks PWM Duty cycles and is line voltage compensated to achieve constant output power limit over the voltage universal input range with recommended reference design. At overload condition when FB input voltage exceeds power limit threshold value for more than TD PL, control circuit reacts to shut down the output power MOSFET. Device restarts when VDD voltage drops below UVLO limit. VDD is supplied by transformer auxiliary winding output. It is clamped when VDD is higher than threshold value. The power MOSFET is shut down when VDD drops below UVLO limit and deviceenters power on start-up sequence thereafter.

Typical Application Schematic


Package Information

SOT-23-6


Symbol	Dimension in Millimeters		Dimension	ons in Inches
Symbol	Min	Max	Min	Max
А	2.692	3.099	0.106	0.122
В	1.397	1.803	0.055	0.071
С		1.450		0.058
D	0.300	0.550	0.012	0.022
F	0.838	1.041	0.033	0.041
Н	0.080	0.254	0.003	0.010
I	0.050	0.150	0.002	0.006
J	2.600	3.000	0.102	0.118
М	0.300	0.600	0.012	0.024
ө	0°	10°	0°	10°

SOP-8

Symbole	Dimensions i	n Millimeters	Dimensions in Inch		
Symbols	MIN	MAX	MIN	MAX	
А	4.801	5.004	0.189	0.197	
В	3.810	3.988	0.150	0.157	
С	1.346	1.753	0.053	0.069	
D	0.330	0.508	0.013	0.020	
F	1.194	1.346	0.047	0.053	
Н	0.178	0.229	0.007	0.009	
I	0.102	0.254	0.004	0.010	
J	5.791	6.198	0.228	0.244	
М	0.406	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

DIP-8

nensions

Symbol		Millimeters			Inches	
Syllibol	Min.	Тур.	Max.	Min.	Тур.	Max.
А			5.334			0.210
A1	0.381			0.015		
A2	3.175	3.302	3.429	0.125	0.130	0.135
b		1.524			0.060	
b1		0.457			0.018	
D	9.017	9.271	10.160	0.355	0.365	0.400
Е		7.620			0.300	
E1	6.223	6.350	6.477	0.245	0.250	0.255
e		2.540			0.100	
L	2.921	3.302	3.810	0.115	0.130	0.150
eB	8.509	9.017	9.525	0.335	0.355	0.375
θ°	0°	7°	15°	0°	7°	15°